交流伺服電機的基本常識 交流伺服電動機的結構主要可分為兩部分,即定子部分和轉子部分。其中定子的結構與旋轉變壓器的定子基本相同,在定子鐵心中也安放著空間互成90度電角度的兩相繞組。其中一組為激磁繞組,另一組為控制繞組,交流伺服電動機一種兩相的交流電動機。 交流伺服電動機使用時,激磁繞組兩端施加恒定的激磁電壓Uf,控制繞組兩端施加控制電壓Uk。當定子繞組加上電壓后,伺服電動機很快就會轉動起來。 通入勵磁繞組及控制繞組的電流在電機內產生一個旋轉磁場,旋轉磁場的轉向決定了電機的轉向,當任意一個繞組上所加的電壓反相時,旋轉磁場的方向就發生改變,電機的方向也發生改變。 為了在電機內形成一個圓形旋轉磁場,要求激磁電壓Uj和控制電壓UK之間應有90度的相位差,常用的方法有: 1)利用三相電源的相電壓和線電壓構成90度的移相 2)利用三相電源的任意線電壓; 3)采用移相網絡 4)在激磁相中串聯電容器
交流伺服電機及其調速分類和特點 長期以來,在要求調速性能較高的場合,一直占據主導地位的是應用直流電動機的調速系統。但直流電動機都存在一些固有的缺點,如電刷和換向器易磨損,需經常維護。換向器換向時會產生火花,使電動機的最高速度受到限制,也使應用環境受到限制,而且直流電動機結構復雜,制造困難,所用鋼鐵材料消耗大,制造成本高。而交流電動機,特別是鼠籠式感應電動機沒有上述缺點,且轉子慣量較直流電機小,使得動態響應更好。在同樣體積下,交流電動機輸出功率可比直流電動機提高10﹪~70﹪,此外,交流電動機的容量可比直流電動機造得大,達到更高的電壓和轉速。現代數控機床都傾向采用交流伺服驅動,交流伺服驅動已有取代直流伺服驅動之勢。 分類和特點 1.異步型交流伺服電動機 異步型交流伺服電動機指的是交流感應電動機。它有三相和單相之分,也有鼠籠式和線繞式,通常多用鼠籠式三相感應電動機。其結構簡單,與同容量的直流電動機相比,質量輕1/2,價格僅為直流電動機的1/3。缺點是不能經濟地實現范圍很廣的平滑調速,必須從電網吸收滯后的勵磁電流。因而令電網功率因數變壞。 這種鼠籠轉子的異步型交流伺服電動機簡稱為異步型交流伺服電動機,用IM表示。 2.同步型交流伺服電動機 同步型交流伺服電動機雖較感應電動機復雜,但比直流電動機簡單。它的定子與感應電動機一樣,都在定子上裝有對稱三相繞組。而轉子卻不同,按不同的轉子結構又分電磁式及非電磁式兩大類。非電磁式又分為磁滯式、永磁式和反應式多種。其中磁滯式和反應式同步電動機存在效率低、功率因數較差、制造容量不大等缺點。數控機床中多用永磁式同步電動機。與電磁式相比,永磁式優點是結構簡單、運行可靠、效率較高;缺點是體積大、啟動特性欠佳。但永磁式同步電動機采用高剩磁感應,高矯頑力的稀土類磁鐵后,可比直流電動外形尺寸約小1/2,質量減輕60﹪,轉子慣量減到直流電動機的1/5。它與異步電動機相比,由于采用了永磁鐵勵磁,消除了勵磁損耗及有關的雜散損耗,所以效率高。又因為沒有電磁式同步電動機所需的集電環和電刷等,其機械可靠性與感應(異步)電動機相同,而功率因數卻大大高于異步電動機,從而使永磁同步電動機的體積比異步電動機小些。這是因為在低速時,感應(異步)電動機由于功率因數低,輸出同樣的有功功率時,它的視在功率卻要大得多,而電動機主要尺寸是據視在功率而定的。
交流伺服電機的優良性能 1 控制精度高 步進電機的步距角一般為1.8。(兩相)或0.72。(五相),而交流伺服電機的精度取決于電機編碼器的精度。以伺服電機為例,其編碼器為l6位,驅動器每接收2 =65 536個脈沖,電機轉一圈,其脈沖當量為360‘/65 536=0,0055 ;并實現了位置的閉環控制.從根本上克服了步進電機的失步問題。 2 矩頻特性好 步進電機的輸出力矩隨轉速的升高而下降,且在較高轉速時會急劇下降,其工作轉速一般在每分鐘幾十轉到幾百轉。而交流伺服電機在其額定轉速(一般為2000r/min或3000r/rain)以內為恒轉矩輸出,在額定轉速以E為恒功率輸出。 3 具有過載能力 以松下交流伺服電機為 4 加速性能好 步進電機空載時從靜止加速到每分鐘幾百轉,需要200—400ms:交流伺服電機的加速性能較好. 1、轉矩控制:轉矩控制方式是通過外部模擬量的輸入或直接的地址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10V對應5Nm的話,當外部模擬量設定為5V時電機軸輸出為2.5Nm:如果電機軸負載低于2.5Nm時電機正轉,外部負載等于2.5Nm時電機不轉,大于2.5Nm時電機反轉(通常在有重力負載情況下產生)。可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的地址的數值來實現。應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖設備,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。 2、位置控制:位置控制模式一般是通過外部輸入的脈沖的頻率來確定轉動速度的大小,通過脈沖的個數來確定轉動的角度,也有些伺服可以通過通訊方式直接對速度和位移進行賦值。由于位置模式可以對速度和位置都有很嚴格的控制,所以一般應用于定位裝置。應用領域如數控機床、印刷機械等等。 3、速度模式:通過模擬量的輸入或脈沖的頻率都可以進行轉動速度的控制,在有上位控制裝置的外環PID控制時速度模式也可以進行定位,但必須把電機的位置信號或直接負載的位置信號給上位反饋以做運算用。位置模式也支持直接負載外環檢測位置信號,此時的電機軸端的編碼器只檢測電機轉速,位置信號就由直接的最終負載端的檢測裝置來提供了,這樣的優點在于可以減少中間傳動過程中的誤差,增加了整個系統的定位精度。
|